Dietary Protein & Parkinson's Disease Treatment

KATIE MACCOUX

Presentation Overview

Personal Interest

Parkinson's Disease

- Second most common neurodegenerative disease
- Most common movement disorder
- Chronic and progressive
- Neurons in the brain gradually break down or die
 - Decreased dopamine levels cause abnormal brain activity

Common Symptoms

- Tremors- rhythmic shaking
- Stiffness or rigidity of the muscles
- Bradykinesia- slowness of movement
- Postural instability
- Impaired gait
- Altered speech

Disease Diagnosis

- No specific clinical test
- Diagnosis based on symptoms and patient medical history
 - Trained neurologists look for at least two of the three core motor symptoms
- May confirm diagnosis with Parkinson's disease medication carbidopa-levodopa
- Brain imaging used to rule out other diseases

Treatment

- No cure
- Medication can help control symptoms
 - Effectiveness of drugs typically decreases as disease progresses
 - Dosage must increase
- Surgery may be recommended for advanced cases
 - Deep Brain Stimulation

Common Medications

Carbidopa-Levodopa

- Levodopa is the precursor of dopamine
- Carbidopa used to prevent Levodopa breakdown in blood

Dopamine Agonists

- Mimic dopamine in the brain
- May be used in conjunction with Levodopa

Carbidopa-Levodopa Protein Effect

- Concern for subset of Parkinson's patients
- Large neutral amino acids from dietary protein favored over Levodopa for absorption

Suggested Parkinson's Diets

Protein Restricted Diet

- Limits protein
- Concern for malnutrition

Protein-Redistribution Diet

• Consuming majority of protein with evening meal when motor activity is less important

Dietary habits and neurological features of Parkinson's disease patients: Implications for practice

Objective

- To investigate the association between Parkinson's disease patients' diets and their neurological features
- Terminology:
 - PD = Parkinson's disease
 - L-dopa = Levodopa
 - FFQ = food frequency questionnaire
 - TDEE = total daily energy expenditure

Methods

- <u>Study Design</u>: cross-sectional case-control
- <u>Participants</u>:
 - 600 patients diagnosed with idiopathic PD with a suggested protein-redistribution diet
 - Subjects seen at the Parkinson Institute in Milan, Italy
 - Controls matched 1:1 by gender, age (±1), physical activity level, and geographical area
- <u>Assessment</u>:
 - Anthropometry
 - Dietary habits: 66-item FFQ
 - Bowel habits
 - PD features

Results: Energy Balance and Body Weight

	PD Patients (n=600)	Controls (n=600)	p-value
Body Weight (kg)	71.8	78.0	< 0.001
BMI (kg/m²)	26.2	28.5	< 0.001
TDEE (kcal/day)	1,938	2,098	< 0.001
Calorie Intake (kcal/day)	2,246	2,084	< 0.001

Results: Disease Progression

• BMI inversely associated with disease duration and severity

		p-value		
	≤5 years (n=202)	6-11 years (n=218)	≥12 years (n=180)	
Body Weight (kg)	73.1	72.2	70.0	0.046
BMI (kg/m²)	26.6	26.5	25.5	0.040
Calorie Intake (kcal/day)	2,166	2,224	2,362	0.002

Results: Disease Progression

- Correlation between greater protein intake, L-dopa dosage, and adverse side effects
- Patients adhering to protein-redistribution diet had higher body weights and lower L-dopa dosages

		p-value		
	≤5 years	6-11 years	≥12 years	
Protein Intake (g/kg/day)	1.1	1.1	1.2	<0.001
L-dopa Dosage (mg/kg/day)	5.3	7.9	9.4	<0.001
OFF state	0.5	1.0	2.1	< 0.001
Dyskinesia	0.5	1.1	1.9	< 0.001
Constipation	35.6%	50.9%	54.4%	< 0.001

Conclusion

- Nutritional care is an important element of PD patient care
- Emphasis on calorie intake and adequate though not excessive protein consumption
 - Minimize risk of malnutrition and maximize effect of L-dopa

Analysis

Strengths

- Controls closely matched to study subjects
- Large sample size
- Authors have no conflicts of interest

EAL Rating: Positive

Limitations

- Cross-sectional study design
- All patients from same movement disorders clinic
- Limited number of food items on FFQ

Motor fluctuations due to interaction between dietary protein and levodopa in Parkinson's disease

Objective

- To determine which PD patients are more likely to experience motor fluctuations related to protein interaction with L-dopa
- Terminology:
 - PIL = protein interaction with levodopa
 - FOG = freezing of gait
 - Dysk = dyskinesia (involuntary muscle movements)
 - Ortho = orthostasis (lightheadedness upon standing)

Methods

- <u>Study Design</u>: Retrospective cohort study
- <u>Participants</u>: 1,037 PD patients seen at the Columbia University Movement Disorders center between 2000 and 2012
 - Idiopathic PD diagnosis according to UK Brian Bank criteria
- <u>PIL Motor Fluctuations</u>:
 - Longer time to L-dopa effectiveness
 - Reduced benefit or duration of benefit
 - Dose failures
 - Earlier wearing off from a previously effective dose

Results

• 5.9% of patients taking L-dopa met criteria for motor fluctuations related to PIL

Results

(Virmani, Tazan, Mazzoni, Ford, & Greene, 2016)

PD Symptoms

• Motor symptoms more severe in patients experiencing PIL

Dietary Modifications

- 20 PIL patients reported making dietary modifications
 - Decreased total daily protein
 - Redistribution of protein to the evening meal
 - Small frequent meals
- 60% reported weight loss following diet changes

Conclusion

- Protein interactions with L-dopa most often occur in patients with earlier disease onset and those with a family history of PD
- Disease symptoms worse among patients experiencing PIL
- Dietary modifications should not be recommended to all patients with PD
 - Other factors including weight loss must be monitored

Analysis

<u>Strengths</u>

- Critical of previous findings
- Only patients reporting motor fluctuations associated with highprotein intake were included in PIL group
- Authors did not have any competing interests

EAL Rating: Neutral

<u>Limitations</u>

- Retrospective study design
- All participants from the Columbia University Movement Disorders center
- Subjective data largely based on patient recall and consistency of physician questioning

Amino acid supplementation in Ldopa treated Parkinson's disease patients

Objective

- To evaluate the effect amino acid supplementation has on nutritional status and motor performance of PD patients taking Ldopa along with a suggested protein-restricted diet
- Terminology:
 - RCT = randomized controlled trial
 - AA = amino acids

Methods

- <u>Study Design</u>: prospective RCT
- <u>Participants</u>: Randomly assigned to either Intervention or Placebo group
 - Enrolled n=22
 - Analyzed n=14
 - Diagnosed based on UK PD Brain Bank criteria
 - On L-dopa therapy for ≥ 2 years
 - Patients seen at Centre for Parkinson's disease and Movement Disorders at Cattinara University-Hospital in Trieste, Italy
- Intervention Duration: 6 months

Participants at Baseline

	Intervention	Placebo	p-value
Number	7	7	
Sex (F/M)	3/4	4/3	
Age (y)	74±1	74±4	0.98
BMI (kg/m²)	25±1	26±1	0.30
Waist circumference (cm)	95±3	100±2	0.28
Disease duration (y)	5.6±1.5	6.0±1.4	0.84

Intervention Group

- Given 16 g/day of free essential, water-soluble AAs for 6 months
- Received 2 bags of AAs 60 minutes after lunch and 60 minutes after dinner
 - 4 g AA/bag
 - Supplement consumed ≥60 minutes before subsequent L-dopa administration
 - Each supplement administration corresponds to 28 g protein
- Participants in control group received placebo according to the same regimen

Results

Assessments taken at baseline, 3 months, and 6 months

	Treatment	ТО	Т3	Т6	Time x Treatment Interaction
Average Daily "Off" Time	Intervention	1.6±0.4	1.7±0.6	2.4±0.7	0.65
	Placebo	1.5 ± 0.2	1.6±0.3	1.6±0.3	
Insulin Sensitivity (QUICKI Index)	Intervention	0.372 ± 0.009	0.370 ± 0.005	0.360 ± 0.006	0.01
	Placebo	0.351 ± 0.014	0.343 ± 0.008	0.344 ± 0.006	

Results: L-dopa Dosage

Results: Oxidative Stress

Conclusion

- AA supplementation was not found to have detrimental neurological or pharmacological effects in protein-restricted PD patients chronically treated with L-dopa
 - May reduce risk of malnutrition
 - No significant increase in "off" periods
 - L-dopa dosage did not change

Analysis

Strengths

- RCT study design
- Participants in intervention and control groups were very similar at baseline

Limitations

- Small sample size and high attrition rate
- Short follow-up period (6 months)

EAL Rating: **Positive**

Next Steps

Practice Implications

- Parkinson's disease symptoms impact nutritional status
 - Difficulty eating
 - Higher calorie needs
 - Protein effect
- Work with entire team to determine appropriate diet

<u>Action</u>

- Calorie and protein recommendations must be individualized
- Risk of malnutrition should be addressed and continually monitored
- Further research is needed regarding amino acid supplementation

Works Cited

Barichella, M., Cereda, E., Cassani, E., Pinelli, G., Iorio, L., Ferri, V., ... Monajemi, F. (2017). Dietary habits and neurological features of Parkinson's disease patients: Implications for practice. *Clinical Nutrition*, *36*(4), 1054–1061.

Cucca, A., Mazzucco, S., Bursomanno, A., Antonutti, L., Di Girolamo, F., Pizzolato, G., ... Biolo, G. (2015). Amino acid supplementation in L-dopa treated Parkinson's disease patients. *Clinical Nutrition*, *34*(6), 1189–1194.

Diagnosing Parkinson's. (2019). Retrieved from American Parkinson Disease Association website: <u>https://www.apdaparkinson.org/what-is-parkinsons/diagnosing/</u>

Duffy, L. (2018, August 27). Parkinson's and protein — what's the connection? Retrieved from Medium website: <u>https://medium.com/parkinsons-uk/parkinsons-and-protein-what-s-the-connection-41e6c820e071</u>

Gilbert, R. (2019, May 21). Carbidopa/Levodopa: Answers to Frequently Asked Questions. Retrieved from American Parkinson Disease Association website: <u>https://www.apdaparkinson.org/article/common-questions-about-carbidopa-levodopa/</u>

Parkinson's Disease. (2018, June 20). Retrieved from Mayo Clinic website: <u>https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/symptoms-causes/syc-20376055</u>

Symptoms of Parkinson's. (2019). Retrieved from American Parkinson Disease Association website: <u>https://www.apdaparkinson.org/what-is-parkinsons/symptoms/</u>

Virmani, T., Tazan, S., Mazzoni, P., Ford, B., & Greene, P. (2016). Motor fluctuations due to interaction between dietary protein and levodopa in Parkinson's disease. *Journal of Clinical Movement Disorders*, *3*(8).

Audience Questions

Katie Maccoux <u>maccke25@uwgb.edu</u>

Research Review Link:

https://uwgbresearchreviews.weebly.com /fall-presentations-2019.html